- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Alan-Lee, Cyrus (1)
-
Nguyen, Hien M (1)
-
Ramakrishna, Boddu S (1)
-
Rani, Neha (1)
-
Schlegel, H Bernhard (1)
-
Xu, Hengfu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The lack of catalytic stereoselective approaches for producing 1,2-cis S-furanosides emphasizes the critical need for further research in this area. Herein, we present a stereoselective S-furanosylation method, utilizing a 4,7-dipiperidine-substituted phenanthroline catalyst. This developed protocol fills a gap in the field, enabling the coupling of cysteine residues and thiols with furanosyl bromide electrophiles. The process allows for stereoselective access to 1,2-cis S-furanosides. Through computational and experimental investigations, thiol is found to be less reactive than alcohol but exhibits greater stereoselectivity. The 1,2-cis stereoselectivity of O-products depends on the nature of the electrophile, while S-products are obtained with excellent 1,2-cis stereoselectivity, irrespective of the furanose structure. The displaced bromide ion from the glycosyl electrophile influences the reaction’s reactivity and stereoselectivity. Alcohol-OH forms a stronger hydrogen bond with bromide ion than thiol-SH, contributing to the difference in their reactivity. The energy difference between forming S-furanoside and O-furanoside transition states is 3.7 kcal/mol, supporting the increased reactivity of alcohol over thiol. The difference in transition state energies between the major and minor S-product is greater than that for the major and minor O-product. This is consistent with experimental data showing how thiol is more stereoselective than alcohol. The catalyst and reaction conditions utilized for the generation of 1,2-cis O-furanosides in our prior studies are found to be unsuitable for the synthesis of 1,2-cis S-furanosides. In the present study, a highly reactive phenanthroline catalyst and specific reaction conditions have been developed to achieve stereoselective S-linked product formation.more » « lessFree, publicly-accessible full text available January 2, 2026
An official website of the United States government
